

Sommaire

IntroductionIntroduction	3
Les principes de base pour une mesure exacte et fiable	4
Nettoyage de l'électrode	5
Étalonnage de la chaîne de mesure	6
Conservation de l'électrode	7
Guide de dépannage	8
Comment tester une électrode ?	
Vieillissement des électrodes	9
Remplissage des électrodes	9
Solutions d'étalonnage, de maintenance et d'entretien	10
Bonnes Pratiques pH	

Entretien et maintenance des électrodes pH

Définition du pH

L'échelle de pH a été introduite en 1909 par le chimiste danois S.P.L. Sørensen, souhaitant effectuer des contrôles qualité dans une brasserie. Le pH indique le degré d'alcalinité (ou basicité) et d'acidité d'une solution. Le potentiel hydrogène (ou pH) mesure l'activité chimique des ions H⁺ (protons solvatés). Le pH est défini comme étant le logarithme négatif de la concentration en ions H⁺.

$pH = -Log a_{[H+]}$

où a_{IH+1} est l'activité des ions H⁺ solvatés, sans unité.

Un acide est un composé qui, dans l'eau, libère des protons, c'est-à-dire des ions H⁺.

Une base est un composé qui, dans l'eau, peut capter des ions H^+ provenant d'une molécule d'eau donnant ainsi lieu à la formation d'ions hydroxyde OH^-

L'échelle du pH

Usuellement, l'échelle de pH s'établit de 0 à 14. En voici l'explication. Comme les ions H^+ s'associent avec des molécules d'eau pour former des ions hydronium (H_3O^+) , le pH s'exprime en fonction de la présence de ces ions. L'eau pure se dissocie en quantité égale en ions hydronium (H_3O^+) et en ions hydroxides (OH^-) . À 25 °C, le nombre de chaque type d'ions est de 10^{-7} moles/L et le nombre d'ions H^+ est égale à celle des ions OH^- . Appelé constante de dissociation de l'eau, le produit de la concentration des ions H^+ par celle des ions OH^- est toujours constant : $10^{-7} \times 10^{-7} = 10^{-14}$. Par conséquent :

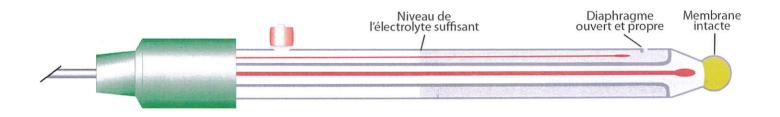
 $[H^{+}] \times [OH^{-}] = 10^{-14}$

Ceci forme la base de l'échelle du pH.

Les outils modernes de mesure du pH

L'instrument de mesure, le pH-mètre qui reçoit le signal de l'électrode, le transcrit pour afficher une valeur entre 0 et 14.

L'électrode pH (combinée ou électrode simple et électrode de référence) avec une membrane en verre sensible aux ions hydronium qui délivre le signal (potentiel).



Les principes de base pour une mesure exacte et fiable

- La chaîne de mesure instrument et électrode doit avoir été étalonnée récemment (recommandation : moins de 24 h).
- Vérifier l'état de l'électrode :
 - ✓ la membrane doit être propre, exempte de rayures et de fissures
 - ✓ le niveau de la solution électrolyte doit se situer environ 1 cm au-dessous de l'orifice de remplissage (faire l'appoint si nécessaire)
 - ✓ l'absence de bulles à l'intérieur de l'électrode, provoquant une instabilité des mesures (agiter légèrement l'électrode à la verticale, comme un thermomètre médical pour les éliminer)
 - √ le diaphragme doit être propre, d'aspect blanc (à nettoyer si nécessaire)
 - ✓ l'électrode doit avoir été maintenue hydratée (hydrater si nécessaire pendant plusieurs heures dans une solution de conservation adéquate).
- Prise en compte de la température de l'échantillon (mesure de la température de l'échantillon ou maintien de l'échantillon à une température connue).
- $\bullet \ Le \ volume \ de \ l'échantillon \ doit être \ suffisant, de \ sorte \ que \ le \ diaphragme \ soit \ complètement immergé \ dans \ l'échantillon.$
- Veiller à l'homogénéité de l'échantillon (agiter si nécessaire).

Avant toute mesure et tout étalonnage, vérifier l'état matériel de l'électrode!

Remarque

La sonde de température permet de mesurer et de calculer la valeur exacte du pH actuel. En aucun cas, il n'est possible de transposer cette valeur pH à d'autres températures. L'évolution du pH n'est pas linéaire et il est tributaire de l'échantillon mesuré.

Toujours associer la température à la valeur de pH : une valeur de pH sans température n'a pas de sens!

UTILISATION DES ELECTRODES pH

- Enlever le capuchon de protection
- Éliminer les éventuels dépôts de sel en passant l'électrode sous l'eau du robinet
- Si l'électrode est desséchée, il faut la plonger dans une solution de conservation HI 70300 pendant une nuit
- Éliminer les éventuelles bulles d'air qui se sont formées au niveau du bulbe en secouant comme un thermomètre médical
- Procéder à la mesure ou en cas de nécessité à un étalonnage

Nettoyage de l'électrode

La durée de vie d'une électrode peut être sensiblement prolongée par un nettoyage périodique (à des températures élevées, un nettoyage n'a que très peu d'influence).

Nettoyage approfondi: dans quels cas nettoyer?

- Lorsque la pente devient trop faible, souvent due à un diaphragme pollué ou obstrué.
- Lorsque le temps de réponse devient trop long.
- Lorsque le point 0 a dérivé.

De nombreuses solutions de nettoyage spécifiques sont disponibles dont voici les plus courantes.

Solution de nettoyage HI 7073L

Cette solution est à utiliser lorsque l'électrode est utilisée dans un milieu protéinique.

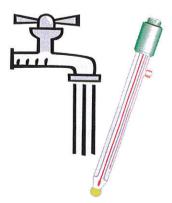
- Plonger l'électrode pendant environ 15 mn à 30 mn
- Nettoyer à l'eau distillée
- Remplacer l'électrolyte pour les électrodes à remplissage
- Réhydrater dans la solution de conservation HI 70300L (quelques heures)
- Étalonner

Solution de nettoyage HI 7074L

Cette solution doit être utilisée lorsque le diaphragme de l'électrode a noirci. Ceci se produit souvent lorsque l'électrode est utilisée dans une solution contenant des sulfures. Les albumines contenues dans le lait peuvent également noircir le diagramme. Les graisses et les hydrates de carbone sont des composés C, H O typiques.

- Plonger l'électrode jusqu'à ce que la jonction soit à nouveau blanche
- Changer l'électrolyte (pour les électrodes à remplissage)
- Nettoyer à l'eau distillée
- Réhydrater dans la solution de conservation HI 70300L
- Étalonner

Solution de nettoyage HI 7061L


Solution de nettoyage standard, à usage général

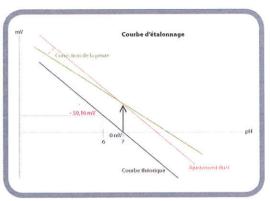
- Plonger l'électrode pendant 1 heure
- Nettoyer à l'eau distillée
- Réhydrater dans la solution de conservation HI 70300L

Solution de nettoyage pour produits gras HI 7077L

Cette solution doit être utilisée ôter les dépôts d'huile et de graisse.

- Plonger l'électrode pendant 1 heure
- Nettoyer à l'eau distillée
- Réhydrater dans la solution de conservation HI 70300L

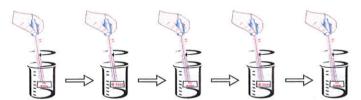
Rincer à l'eau distillée ou à l'eau du robinet après chaque mesure afin d'éviter la pollution entre différentes solutions. Ne jamais essuyer la membrane avec du papier mouchoir ou essuie-tout, qui pourraient la rayer et l'endommager.


Étalonnage de la chaîne de mesure

Les caractéristiques de l'électrode pH se modifient à l'usage et dans le temps. L'étalonnage permet de déterminer et d'ajuster la pente et le zéro de l'électrode à leur valeur vraie dans la chaîne de mesure.

L'étalonnage en un point s'effectue au pH 7, l'étalonnage en 2 points au \underline{pH} $\underline{7}$ en premier lieu puis au pH 4 (acide) ou 10 (alcalin) selon le milieu dans lequel on souhaite mesurer. Pour des mesures précises, il est recommandé d'étalonner l'instrument dans les conditions de pH et de température identiques à celles des mesures.

La fréquence d'étalonnage dépend de la précision requise, de la nature des échantillons et leur effet sur l'électrode. Nous recommandons un


étalonnage quotidien, en cas de mesures journalières, mais c'est l'opérateur, qui, selon son expérience, décide de l'intervalle adapté entre chaque étalonnage.

Un étalonnage est obligatoire dans les cas suivants :

- Après chaque utilisation d'une solution de nettoyage
 - Après un remplissage d'électrolyte
 - En connectant une autre électrode pH
 - Après un conservation de longue durée
- Lorsque les résultats de mesure diffèrent trop des valeurs attendues.

Procédure d'étalonnage en 2 points

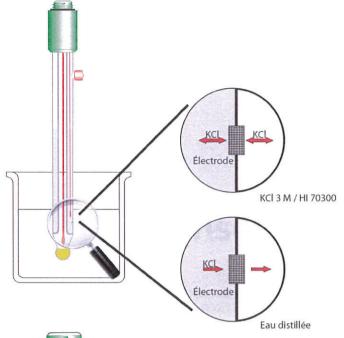
Pour des mesures en milieu acide

Rincer l'électrode à l'eau distillée et commencer par pH 7. Puis rincer l'électrode à l'eau distillée et passer à pH 4.

Pour des mesures en milieu basique

Rincer l'électrode à l'eau distillée et commencer par pH 7. Puis rincer l'électrode à l'eau distillée et passer à pH 10.

Recommandations importantes


- Veiller à la qualité des solutions tampons (date de péremption, date d'ouverture, pureté...)
- Choisir des tampons dont les valeurs encadrent le pH attendu de l'échantillon
- Ne pas étalonner directement dans les flacons
- Rincer l'électrode à l'eau distillée entre chaque point d'étalonnage pour éviter la pollution entre différentes solutions tampons
- Ne jamais réutiliser des solutions tampons usagées

Conservation de l'électrode

Afin que les électrodes ne se dessèchent pas entre deux mesures et soient immédiatement opérationnelles, elles doivent être tenues plongées dans une solution. Il convient d'utiliser une solution spéciale pour la conservation des électrodes **HI 70300L** ou à défaut et à titre exceptionnel dans de l'eau du robinet.

MAIS IL NE FAUT EN AUCUN CAS STOCKER UNE ÉLECTRODE DANS DE L'EAU DISTILLÉE!

À l'appui de nos retours d'expérience, nous constatons régulièrement que certains utilisateurs confondent nettoyage et conservation des électrodes et emploient de l'eau distillée pour conserver leur électrode. Ce traitement est très nocif pour les électrodes à remplissage, «fatal» et irréversible pour les électrodes à électrolyte gel.

En utilisant une solution de conservation adéquate, un équilibre ionique s'établit entre l'électrolyte de référence et la solution de conservation, cette dernière exerçant une contre-pression évitant la diffusion des ions KCI de l'électrolyte. Dans ces conditions, l'électrolyte peut même se régénérer un peu.

Lors d'une conservation dans une eau distillée - milieu très pauvre en ions -, les ions KCl de l'électrolyte de référence «s'échappent», se diffusent dans l'eau distillée. La concentration des ions KCl s'appauvrit dans l'électrolyte, entraînant l'anéantissement de la conductibilité électrolytique du système.

Stocker l'électrode à la verticale et mettre toujours quelques gouttes de solution de conservation **HI 70300L** dans le bouchon de protection.

Ne jamais conserver l'électrode dans de l'eau distillée

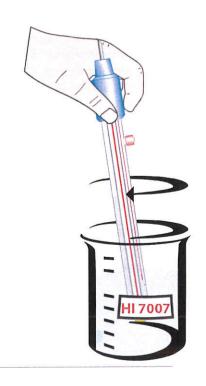
- Pour une conservation courte durée (usage quotidien ou hebdomadaire): dans la solution de conservation (réf. HANNA HI 70300L).
- Pour une conservation longue durée : verser quelques gouttes de solution de conservation dans le capuchon de l'électrode et entreposer verticalement.

Guide de dépannage

Symptôme	Cause	Remède
Temps de réponse long	• Erreur d'étalonnage	 Renouveler l'étalonnage, contrôler les solutions tampons
	Membrane mal hydratée	 Plonger l'électrode dans une solution de conservation pendant quelques heures et refaire
	 Diaphragme contaminé, obstrué 	un étalonnage Nettoyer avec une solution de nettoyage et
	Membrane de verre sale	réitérer l'étalonnage
	 Électrode endommagée ou usagée 	 Nettoyer avec une solution de nettoyage et réitérer l'étalonnage
		 Remplacer l'électrode et étalonner
Mesures instables	 Électrode inadéquate 	 Vérifier si l'électrode est appropriée à l'application (n'hésitez pas à nous consulter)
	 Obturation du diaphragme 	 Écarter les dépôts de cristaux obstruant le diaphragme sous l'eau du robinet et vérifier le niveau de l'électrolyte. En cas de précipités à l'intérieur de l'électrode, remplacer l'électrolyte
	 Problèmes d'alimentation ou de connexion 	 Contrôler la connectique ou remplacer la pile
Dérive du signal	 Encrassement du diaphragme 	 Nettoyer avec une solution de nettoyage et réitérer l'étalonnage
	 Problème d'écoulement de l'électrolyte Absence d'agitation 	 Vérifier l'absence de colmatage de l'orifice de remplissage Plonger l'électrode dans une solution de conservation pendant quelques heures et refaire un étalonnage
		 Assurer une agitation homogène de l'échantillon pendant la mesure

Comment tester une électrode?

Pour faire rapidement un diagnostic d'une électrode, il faut contrôler :


- Le niveau de l'électrolyte dans l'électrode (à remplir si nécessaire)
- L'aspect de la jonction normalement blanche (à nettoyer si nécessaire).
- Pour un test plus approfondi, on utilise un pH-mètre avec la fonction mV.
- Plonger l'électrode dans une solution pH 7,01 et relever la valeur en mV (normalement entre -20 et +20 mV).
- Plonger l'électrode dans une solution pH 4,01 et vérifier si la différence entre la valeur à pH 7,01 et à pH 4,01 se situe entre 160 à 180 mV.

1er exemple:

valeur lue dans pH 7 : -16 mV ; valeur lue dans pH 4 : 148 mV Δ = 164 mV : électrode encore utilisable.

2º exemple:

valeur lue dans pH 7 : 18 mV ; valeur lue dans pH 4 : 164 mV \triangle = 146 mV : pente trop faible.

Vieillissement des électrodes

Une électrode ne se trouve jamais en équilibre chimique parfait avec la solution à mesurer. Le bulbe en verre est lentement et continuellement "agressé". Le vieillissement d'une électrode se manifeste par un temps de réponse toujours plus long, une dégradation de la pente et une dérive du point 0. La modification de la pente est plus rapide et plus significative pour des pH supérieurs à 11. La dérive du point 0 peut être aisément compensée par un étalonnage régulier. L'augmentation de la température est également un facteur aggravant de vieillissement. Le vieillissement d'une électrode étant fonction de divers facteurs, il est difficile de définir une durée de vie exacte.

Nous pouvons toutefois avancer les données suivantes :

- utilisation à température ambiante : de 1 à 3 ans
- utilisation aux environs de 60-80 °C: quelques mois
- utilisation aux environs de 80-100 °C : quelques semaines.

Les électrodes simple jonction

Les électrodes simple jonction sont presque toujours remplies avec un électrolyte KCl 3 M saturé avec une solution de chlorure d'argent Ag/AgCl. L'élément de référence étant lui-même en chlorure d'argent, si une électrode de ce type est simplement remplie avec une solution de KCl non saturée, le chlorure d'argent de la référence sera très rapidement réduit. Donc pour une électrode simple jonction, il faudra utiliser un électrolyte saturé KCl + AgCl (référence **HI 7071**).

Les électrodes double jonction

Pour les électrodes double jonction, l'élément de référence est isolé de l'électrode de mesure (compartiment séparé protégé par une jonction). Dans ce cas, l'électrolyte de remplissage est une solution de KCl 3,5 M (**HI 7082**).

La pénétration de liquide dans l'électrode par la jonction est à éviter. Ceci entraînerait une dérive de la tension d'électrode ou une pollution de l'élément de référence. Un entretien régulier de la jonction évite qu'elle ne s'obstrue.

Remplissage des électrodes

Les électrodes simple jonction

Les électrodes simple jonction sont presque toujours remplies avec un électrolyte KCl 3 M saturé avec une solution de chlorure d'argent Ag/AgCl. L'élément de référence étant lui-même en chlorure d'argent, si une électrode de ce type est simplement remplie avec une solution de KCl non saturée, le chlorure d'argent de la référence sera très rapidement réduit. Donc pour une électrode simple jonction, il faudra utiliser un électrolyte saturé KCl + AgCl réf. **HI 7071**.

Les électrodes double jonction

Pour les électrodes double jonction, l'élément de référence est isolé de l'électrode de mesure (compartiment séparé protégé par une jonction). Dans ce cas, l'électrolyte de remplissage est une solution de KCI 3,5 M réf. **HI 7082**.

La pénétration de liquide dans l'électrode par la jonction est à éviter. Ceci entraînerait une dérive de la tension d'électrode ou une pollution de l'élément de référence. Un entretien régulier de la jonction évite qu'elle ne s'obstrue.

Solutions d'étalonnage, de maintenance et d'entretien

Pour un étalonnage précis et une maintenance efficace, HANNA instruments propose des solutions en divers conditionnements et prêtes à l'emploi. Contrôlées en usine, elles sont garanties de haute qualité et d'une grande fiabilité.

Solutions tampons pH en flacons prêts à l'emploi, 500 mL

Solution d'étalonnage pH 4,01
Solution d'étalonnage pH 6,86
Solution d'étalonnage pH 7,01
Solution d'étalonnage pH 9,18
Solution d'étalonnage pH 10,01

Solutions tampons pH en flacons prêts à l'emploi, 1 L

HI 7004/1L	Solution d'étalonnage pH 4,01
HI 7006/1L	Solution d'étalonnage pH 6,86
HI 7007/1L	Solution d'étalonnage pH 7,01
HI 7009/1L	Solution d'étalonnage pH 9,18
HI 7010/1L	Solution d'étalonnage pH 10,01
HI 7092L	Solution de prétraitement oxydante, 460 mL

Solutions de nettoyage et de maintenance prêtes à l'emploi

HI 70000P	Solution de rinçage, 25 sachets de 20 mL
HI 70300L	Solution de conservation pour électrodes, flacon de 500 mL
HI 7061L	Solution de nettoyage pour électrodes, usage général, flacon de 500 mL
HI 7077L	Solution de nettoyage pour électrodes, graisses et huiles, flacon de 500 mL
HI 7073L	Solution de nettoyage pour électrodes, protéines, flacon de 500 mL
HI 7074L	Solution de nettoyage pour électrodes, matières inorganiques, flacon de 500 mL
HI70621L	Solution de nettoyage pour électrodes, industrie cosmétique (huile/graisse), bouteille 500 mL
HI70630L	Solution de nettoyage pour électrodes, acide, viandes, bouteille 500 mL
HI70631L	Solution de nettoyage pour électrodes, alcaline, viandes, bouteille 500 mL
HI70632L	Solution de nettoyage pour électrodes, matières organiques, bouteille 500 mL
HI70635L	Solution de nettoyage pour électrodes, dépôts de vin (tartre), bouteille 500 mL
HI70636L	Solution de nettoyage pour électrodes, taches de vin (tannins), bouteille 500 mL
HI70640L	Solution de nettoyage pour électrodes, lait, bouteille 500 mL
HI70641L	Solution de nettoyage pour électrodes, produits laitiers (désinfection), bouteille 500 mL
HI70642L	Solution de nettoyage pour électrodes, fromages, bouteille 500 mL
HI70643L	Solution de nettoyage pour électrodes, dépôts de yaourt, bouteille 500 mL
HI70663L	Solution de nettoyage pour électrodes, sols (terre, terreau), bouteille 500 mL
HI70664L	Solution de nettoyage pour électrodes, sols (tourbe, humus), bouteille 500 mL
HI70670L	Solution de nettoyage pour électrodes, dépôts de sels (process), bouteille 500 mL
HI70671L	Solution de nettoyage pour électrodes, algues, moisissures, bactéries, bouteille 500 mL
HI70681L	Solution de nettoyage pour électrodes, taches d'encre, bouteille 500 mL
HI 7082	Electrolyte pour électrodes à remplissage, double jonction, 4 flacons de 30 mL
HI 7071	Electrolyte pour électrodes à remplissage, simple jonction, 4 flacons de 30 mL

Pour une sécurité d'utilisation optimale, chaque solution possède une étiquette indiquant :

- la date de péremption
- le numéro de lot
- une table de température précisant les variations de la valeur du tampon en fonction de la température.

Check-list - Bonnes pratiques pH

Conserver l'électrode humide

Pourquoi? – Une électrode asséchée occasionne une dérive des valeurs pH, de longs temps de réponse et des mesures inexactes.

Action – Réhydrater une électrode asséchée en la plongeant dans la solution de conservation pendant une heure.

Rincer et non essuyer une électrode

Pourquoi? – En frottant le verre pH spécifique, la surface de contact se charge d'électricité statique provoquant des interférences influant la mesure.

Action – Rincer l'électrode avec de l'eau distillée. Essuyer sans frotter avec un chiffon doux non pelucheux pour sécher l'excès d'humidité.

Stocker l'électrode dans une solution de conservation

Pourquoi? – Avec l'eau distillée, la concentration des ions KCl s'appauvrit dans l'électrolyte, entraînant l'anéantissement de la conductibilité électrolyte du système.

Action – Conserver les électrodes dans une solution de conservation ou à titre exceptionnel dans de l'eau du robinet.

Nettoyer l'électrode régulièrement

Pourquoi ? – À l'usage, certains échantillons produisent des dépôts sur le bulbe. Ces dépôts altèrent le bon fonctionnement de la jonction liquide et faussent les mesures et étalonnages.

Action – Nettoyer régulièrement les électrodes avec des solutions de nettoyage spécifiques et adaptée aux applications.

Étalonnage fréquent

Pour une exactitude de mesure optimale, le couple instrument/électrode doit être réglé en fonction de solutions tampons (étalons) pour compenser les déviations du potentiel zéro et de la pente de l'électrode avec le temps.

Action – La fréquence d'étalonnage dépend de la précision requise. Un étalonnage quotidien est recommandé.

Choisir l'électrode adaptée à son application

Pourquoi? – Les électrodes à usage général sont adaptées à de nombreuses applications mais pas forcément idéales pour tout échantillon.

Action – Étudier préalablement son échantillon et choisir une électrode adaptée à son application (spécial alimentaire, hautes températures, nonaqueux...)

Ôter ou desserrer le capuchon de l'orifice de remplissage

Pourquoi? – Lorsque l'orifice est fermé, le temps de stabilisation augmente.

Action – Le dévissage du capuchon de l'orifice de remplissage crée un équilibre isobare permettant un écoulement optimum de l'électrolyte de référence. Refermer l'orifice en fin de mesure. (ne concerne pas les électrodes à remplissage gel et solide)

Surveiller le niveau de l'électrolyte liquide

Pourquoi? – L'électrolyte de référence assure le pont électrolytique, son écoulement vers l'extérieur de l'électrode est de règle. En cas de niveaux d'électrolyte trop bas, les mesures sont erronées. (ne concerne pas les électrodes à remplissage gel et solide)

Action – Contrôler que le niveau d'électrolyte ne soit jamais en deçà de plus d'un centimètre de l'orifice de remplissage.

Veiller à la profondeur d'immersion

Pourquoi? – Pour une mesure correcte, la membrane et la jonction de référence doivent être immergées dans l'échantillon .

Action – Ajuster le volume de l'échantillon.

Tester l'électrode

Pourquoi? – Au fil du temps, la membrane en verre sensitif s'altère occasionnant des mesures erronées. Une détérioration liée à l'usage peut aussi en être une cause.

Action – Procéder à un diagnostic de l'électrode selon la procédure indiquée en page 8 («Comment tester une électrode ? »)

